Errata (September 5, 2013)

$\frac{\text { p. } 42, \text { line } 3 \downarrow}{C_{e}^{*}(K)=\cdots}=e^{-r T} \int_{K}^{\infty}(x-K) \varphi_{T}^{*}(x) d x$
p. 65 , line $1 \downarrow$
$\ldots \varphi_{1}, \varphi_{2} \in \mathbb{R}^{d+1} \ldots$
$\frac{\text { p. } 106 \text {, line } 5 \downarrow}{\ldots \text { for }|h|>0 \ldots}$
$\frac{\text { p. } 115, \text { line } 2 \downarrow}{\psi(L)=\sum^{\infty}}$
$\psi(L)=\sum_{i=0}^{\infty} \psi_{i} L^{i}$
$\frac{\text { p. } 118, \text { line } 4 \uparrow}{. . \text { if }\left|z_{j}\right|>1 \ldots}$
p. 148 , line $10 \uparrow$
\ldots from time $t-1$ to $t \ldots$
p. 154, Definition 4.4.2
... if there is some self-financing trading strategy...
p. 156 , line $11 \downarrow$

Thus, $1_{\Omega \backslash A_{c}} \cdot E^{*}\left(V_{t}^{*} \mid \mathcal{F}_{t}\right)+1_{A_{c}} V_{t-1}^{*}$ is a version of $E\left(V_{t}^{*} \mid \mathcal{F}_{t-1}\right)$.
p. 158, Theorem 4.4.8

In the proof of Theorem 4.4.8 the definition of \mathcal{V} is not correct (one considers the discounted terminal values but has to allow for self-financing strategies) and it is instructive to add the details of the verification that \widetilde{Q} is an equivalent martingale measure, which are similar to the argument in Theorem 4.3.5. Here are the changes:

Define

$$
\mathcal{V}=\left\{V_{0}+\int_{0}^{T} \varphi_{t}^{\prime} d S_{t}^{*}, \quad\left\{\varphi_{t}\right\} \text { predictable, } V_{0} \text { a constant }\right\}
$$

In order to verify that S_{t}^{*} is a \mathcal{F}_{t}-martingale under \widetilde{Q}, it suffices to show that

$$
\begin{equation*}
E_{\widetilde{Q}}\left(\int_{0}^{T} \varphi_{t}^{\prime} d S_{t}^{*}\right)=0 \tag{1}
\end{equation*}
$$

for all predictable and bounded $\left\{\varphi_{t}\right\}$. Indeed, this implies that

$$
E_{\widetilde{Q}}\left(1_{A}\left(S_{t+1, i}^{*}-S_{t, i}^{*}\right)\right)=0, \quad A \in \mathcal{F}_{t}
$$

which is equivalent to $E_{\widetilde{Q}}\left(S_{t+1, i}^{*} \mid \mathcal{F}_{t}\right)=S_{t, i}^{*}$, since the left-hand side equals $\int_{0}^{T} \varphi_{t}^{\prime} d S_{t}^{*}$, if we put $\varphi_{u j}=1_{A}$ if $u=t$ and $j=i$ and $\varphi_{u j}=0$ otherwise. To
check (1), notice that by definition of \widetilde{Q}

$$
E_{\widetilde{Q}}\left(\int_{0}^{T} \varphi_{t}^{\prime} d S_{t}^{*}\right)=E^{*}\left(\int_{0}^{T} \varphi_{t}^{\prime} d S_{t}^{*}\right)+\frac{1}{\left\|C_{\mathcal{V}^{\perp}}\right\|_{\infty}} \int C_{\mathcal{V}^{\perp}}^{*} \int \varphi_{t}^{\prime} d S_{t}^{*} d P^{*}
$$

The first term vanishes, since φ_{t} is predictable and S_{t}^{*} a martingale under P^{*}. The second one can is given as $\frac{1}{\left\|C_{\mathcal{V} \perp}\right\|_{\infty}}\left(C_{\mathcal{V} \perp}^{*}, \int \varphi_{t}^{\prime} d S_{t}^{*}\right)=0$, since $\int \varphi_{t}^{\prime} d S_{t}^{*} \in \mathcal{V}$. $\frac{\text { p. } 159 \text {, line } 3 \uparrow}{\ldots E\left(C^{*} \mid \mathcal{F}_{t}\right) \ldots}$ p. 161, line $8 \downarrow$

The model is arbitrage-free if and only if $\mathcal{P}=\left\{P^{*}\right\}$. Then S_{t}^{*} is a martingale under P^{*} and...
p. 167 , line $3 \downarrow$

Replace σ / \sqrt{n} by σ.
p. 167, line $9 \uparrow$

Replace $B(1)$ by B_{1}.
p. 320 , line $6 \uparrow$

Replace m^{2} / T by m^{3} / T.
p. 322 , line $3,5 \uparrow$

Replace $\left.\frac{1}{N} \right\rvert\,$ in front of $\left|\sum \ldots\right|$ by $\frac{1}{T}$. The final estimate is $O\left(m^{3} / T\right)$ instead of $O\left(m^{2} / T\right)$.
p. 352 , line $9 \uparrow$

Replace $d x_{t}$ by $d x_{T}$.
p. 352, Theorem 9.3.2

The proof is written down for a non-randomized test δ. Replacing (at lines $9,15) P_{0}(\delta=1)$ by $E_{0}(\delta)$ and $P_{k}(\delta=1)$ by $E_{k}(\delta)$ (at line 2) and deleting $=P_{k}(\delta=1)$ (at line 11) yields the proof for a randomized test δ.
p. 354, line $10 \downarrow$

Replace $L_{1}\left(X_{1}, \ldots, X_{T}\right)$ by $L_{0}\left(X_{1}, \ldots, X_{T}\right)$.
p. 360, line $9 \downarrow$

Delete the first $\frac{1}{\sqrt{T}}$ in front of \widehat{m}_{t}.

